

ISOMETER® IR155-3203 / IR155-3204

Insulation monitoring device (IMD) for unearthed DC drive systems (IT systems) in electric vehicles

Version V003

ISOMETER® IR155-3204

Device features

- · Suitable for 12 V and 24 V systems
- Automatic device self test
- Continous measurement of insulation resistance 0...10 $M\Omega$
 - Response time < 2 s after power on for first estimated insulation resistance (SST)
 - Response time < 20 s for measured insulation resistance (DCP)
- Automatic adaptation to the existing system leakage capacitance (≤1 μF)
- Detection of ground faults and lost ground line
- Isolation monitoring of AC and DC insulation faults for unearthed systems (IT systems) 0 V...1000 V peak
- Low voltage detection for voltages below 500 V (value configurable EOL Bender)
- Short protected outputs for:
 - Fault detection (high side output)
 - Measurement value (PWM 5 % ... 95 %) & status (f = 10 Hz...50 Hz) at high or inverted low side driver (M_{HS} / M_{LS} output)
- · Conformal coating (SL1301ECO-FLZ)

ATTENTION

Observe precautions for handling electrostatic sensitive devices.

Handle only at safe work stations.

ATTENTION

The device is monitoring HIGH VOLTAGE.

Be aware of HIGH VOLTAGE near to the device.

Product description

The ISOMETER® iso-F1 IR155-3203/-3204 monitors the insulation resistance between the insulated and active HV-conductors of an electrical drive system ($U_n = DC \ 0 \ V...1000 \ V$) and the reference earth (chassis ground \blacktriangleright Kl.31). The patented measurement technology is used to monitor the condition of the insulation on the DC side as well as on the AC motor side of the electrical drive system. Existing insulations faults will be signalised reliably even under high system interferences which can be caused by motor control processes, accelerating, energy recovering etc.

Due to its space saving design and optimised measurement technology, the device is optimised for use in hybrid or fully electric vehicles. The device meets the increased automotive requirements with regard to the environmental conditions (e.g. temperatures and vibration, EMC...).

The fault messages (insulation fault at the HV-system, connection or device error of the IMD) will be provided at the integrated and galvanic isolated interface (high- resp. low-side driver). The interface consists of a status output (OK_{HS} output) and a measurement output (M_{HS} / M_{LS} output). The status output signalises errors resp. the "good" condition. The measurement output signalises the actual insulation resistance. Furthermore it's possible to distinguish between different fault messages and device conditions, which are base frequency encoded.

Function

The ISOMETER® iso-F1 IR155-3203/-3204 generates a pulsed measuring voltage, which is superimposed on the IT system by the terminals L+/L- and E/KE. The currently measured insulation condition is available as a pulse-width-modulated signal at the terminals $M_{\rm HS}$ resp. $M_{\rm LS}$. The connection between the terminals E/KE and the chassis ground (\blacktriangleright Kl.31) is continuously monitored. Therefore it's necessary to install two separated conductors from the terminals E resp. KE to chassis ground.

Once power is switched on, the device performs an initialisation and starts the SST measurement. The device provides the first estimated insulation resistance during a maximum time of 2 sec. The DCP measurement (> continuous measurement method) starts subsequently. Faults in the connecting wires or functional faults will be automatically recognised and signalled.

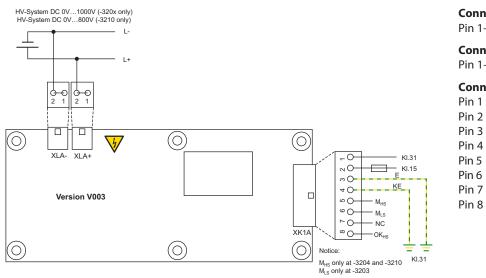
During operation, a self test is carried out automatically every fife minutes. The interfaces will not be influenced by these self tests.

Standards

Corresponding norms and regulations*

IEC 61557-8	2007-01
IEC 61010-1	2010-06
IEC 60664-1	2004-04
ISO 6469-3	2001-11
ISO 23273-3	2006-11
ISO 16750-1	2006-08
ISO 16750-2	2010-03
ISO 16750-4	2010-04
e1 acc. 72/245/EWG/EEC	2009/19/EG/EC
DIN EN 60068-2-38	Z/AD:2010
DIN EN 60068-2-30	Db:2006
DIN EN 60068-2-14	Nb:2010
DIN EN 60068-2-64	Fh:2009
DIN EN 60068-2-27	Ea:2010

* Normative exclusion


The device went through an automotive test procedure in combination of multi customer requirements reg. ISO16750-x. The norm IEC61557-8 will be fulfilled by creating the function for LED warning and test button at the customer site if necessary. The device includes no surge and load dump protection above 40 V. An additional central protection is necessary.

Abbreviations

DCP Direct Current Pulse SST Speed Start Measuring

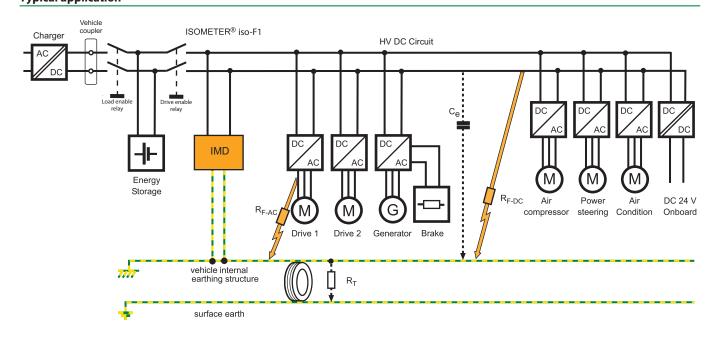
Wiring diagrams

Connector XLA+

Pin 1+2 L+ Line voltage

Connector XLA-

Pin 1+2 L-Line voltage

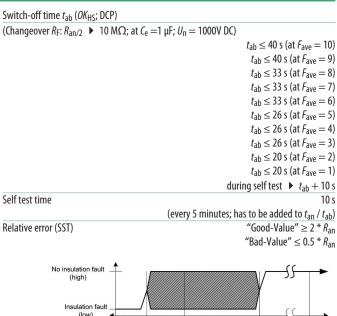

Connector XK1A

Pin 2	Kl. 15	Supply voltage
Pin 3	Kl. 31	Chassis ground
Pin 4	Kl. 31	Chassis ground (sep. line)
Pin 5	M_{HS}	Data Out, PWM (high side)
Pin 6	M_{LS}	Data Out, PWM (low side)
Pin 7	n.c.	

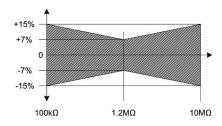
Kl. 31 Chassis ground

OK_{HS} Status Output (high side)

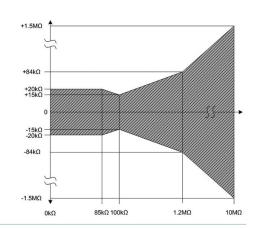
Typical application



Technical data


Supply voltage $U_{\rm S}$	DC 1036 V
Nominal supply voltage	DC 12 V / 24 V
Voltage range	10 V36 V
Max. operational current I_S	150 mA
Max. current I _k	2 A
	6 A / 2 ms Rush-In current
Power dissipation P _S	< 2 W
Line L+ / L- Voltage U_n	AC 0 V1000 V peak;
	0 V 660 V rms (10 Hz 1 kHz)
	DC 0 V1000 V
Protective separation (reinforced insulation) between	
	L-) — (KI.31, KI.15, E, KE, M _{HS} , M _{LS} , <i>OK</i> _{HS})
Voltage test	AC 3500 V / 1 min
Load dump protection	< 40 V
Under voltage detection	0 V 500 V; Default: 0 V (inactive)
System leakage capacity C _e	≤ 1 μF
Reduced measuring range and increased measur	
	$_{1}$ = 68 s @ change over $R_{\rm F}$ 1 M Ω > $R_{\rm an}/2$)
Measuring voltage U_{m}	+/- 40 V
Measuring current $I_{\rm m}$ at $R_{\rm F} = 0$	+/- 33 μΑ
Impedance Z _i at 50 Hz	≥ 1.2 MΩ
Internal resistance R _i	≥ 1.2 MΩ
Measurement range	010 MΩ
Measurement method	Bender DCP technologie
Factor averaging	
F _{ave} (Output M)	110 (default: 10; EOL Bender)
Relative error at SST (\leq 2s)	Good > 2 * R_{an} ; Bad < 0.5 * R_{an}
Relative error at DCP	085 kΩ ▶ +/-20 kΩ
	100 kΩ10 MΩ ▶ +/-15 %
Relative error Output — M (base frequencies)	+/-5% at each frequency
	(10 Hz; 20 Hz; 30 Hz; 40 Hz; 50 Hz)
Relative error under voltage detection	$U_{\rm n} \ge 100 \rm V \blacktriangleright +/-10 \%;$
	at U_n ≥300 V ▶ +/-5 %
Response value hysteresis (DCP)	25 %
Response value R _{an}	100 kΩ1 MΩ
	rances at $R_{\rm an}$ < 85 k Ω ; (Default: 100 k Ω)
Response time t_{an} (OK_{HS} ; SST)	$t_{\rm an} \le 2 {\rm s} ({\rm typ.} < 1 {\rm s} {\rm at} U_{\rm n} > 100 {\rm V})$
Response time t_{an} (OK_{HS} ; DCP)	
(Changeover R_F : 10 M $\Omega \triangleright R_{an}/2$; at $C_e = 1 \mu F$; U	$n_{\rm p} = 1000 \text{V DC}$
	$t_{\rm an} \le 20 \rm s (at F_{\rm ave} = 10^*)$

 $t_{an} \le 20 \text{ s (at } F_{ave} = 10^*)$ $t_{an} \le 17.5 \text{ s (at } F_{ave} = 9)$ $t_{an} \le 17.5 \text{ s (at } F_{ave} = 8)$ $t_{an} \le 15 \text{ s (at } F_{ave} = 7)$ $t_{an} \le 12.5 \text{ s (at } F_{ave} = 6)$ $t_{an} \le 12.5 \text{ s (at } F_{ave} = 5)$ $t_{an} \le 10.5 \text{ s (at } F_{ave} = 4)$ $t_{an} \le 7.5 \text{ s (at } F_{ave} = 3)$ $t_{an} \le 7.5 \text{ s (at } F_{ave} = 2)$ $t_{an} \le 5 \text{ s (at } F_{ave} = 1)$ during self test $\blacktriangleright t_{an} + 10 \text{ s}$



1.2 M Ω \blacktriangleright +/-7 % 1.2 M Ω ...10 M Ω \blacktriangleright +/-7 % to +/-15 % 10 M Ω \blacktriangleright +/-15 %

Absolute error (DCP) $0 \Omega ... 85 k\Omega + +/-20 k\Omega$

^{*} $F_{ave} = 10$ is recommended for electric vehicles

Measurement Output (M)

$M_{\rm HS}$ switches to $U_{\rm S}-2$ V (3204)

(external load to ground necessary \rightarrow 2.2 k Ω)

M_{15} switches to KI.31 +2 V (3203)

(external load to U_b necessary $\rightarrow 2.2 \text{ k}\Omega$)

0 Hz ► Hi > short to U_b + (Kl.15); Low > IMD off or short to Kl.31

10 Hz ► Normal Condition Insulation measuring DCP; starts 2 s after Power-On; first successful insulation measurement at ≤ 17.5 s PWM active 5 %...95 %

20 Hz ➤ Under voltage condition Insulation measuring DCP (correct measurement); starts 2 s after Power-On; PWM active 5 %...95 % first successful insulation measurement at ≤ 17.5 s

Under voltage detection 0 V...500 V (EOL Bender configurable).

30 Hz ► Speed Start Insulation measuring (only good/bad estimation); Starts directly after Power-On; response time ≤ 2 s; PWM 5 %...10 % (good) and 90 %...95 % (bad)

40 Hz ► IMD Error IMD error detected; PWM 47.5%...52.5%

50 Hz ➤ Ground error Error on measurement ground line (Kl. 31) detected PWM 47.5%...52.5%

Status Output (OKHS)

OK_{HS} switches to $U_S - 2 V$

(external load to ground necessary \rightarrow 2.2 k Ω)

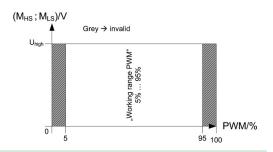
High ► No fault; R_F > response value

Low ► Insulation resistance ≤ response value

detected; IMD error; ground error,

under voltage detected or IMD off

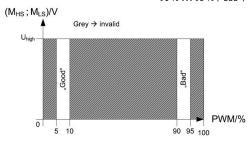
(ext. pull-down resistor required)


Operating principle PWM- driver

• Condition "Normal" and "Under voltage detected" (10Hz; 20Hz)

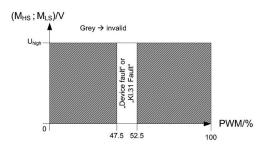
Duty cycle \blacktriangleright 5 % = >50 M Ω (∞) Duty cycle \blacktriangleright 50 % = 1200 k Ω Duty cycle \blacktriangleright 95 % = 0 k Ω

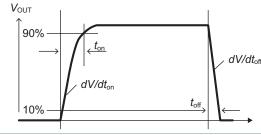
$$R_{\rm F} = \frac{90\% \text{ x } 1200 \text{ k}\Omega}{dc_{\rm meas} - 5\%} - 1200 \text{ k}\Omega$$


 $dc_{\text{meas}} = \text{measured duty cycle } (5 \%...95 \%)$

Operating principle PWM- driver

Condition "SST" (30Hz)


Duty cycle ▶ 5 %...10 % ("Good") 90 % ... 95 % ("Bad")


Operating principle PWM- driver

· Condition "Device error" and "KI.31 fault" (40Hz; 50Hz)

Duty cycle ▶ 47.5 % ... 52.5 %

Load current /L	80 mA
Turn-on time ► to 90 % V _{OUT}	Max. 125 μs
Turn-off time ▶ to 10 % V _{OUT}	Max. 175 μs
Slew rate on ▶ 10 to 30 % V _{OUT}	Max. 6 V/μs
Slew rate off ▶ 70 to 40 % V _{OUT}	Max. 8 V/μs
Timing 3204 (inverse of 3203)	<u>. </u>

Connectors TYCO-MICRO MATE-N-LOK

1 x 2-1445088-8

(KI.31, KI.15, E, KE, M_{HS}, M_{LS}, OK_{HS}) 2 x 2-1445088-2 (L+, L-)

TYCO MICRO MATE-N-LOK Gold 14x 1-794606-1

 $\begin{tabular}{lll} Wire size: AWG 20...24 \\ Necessary crimp tongs (TYCO) & 91501-1 \\ Operating mode / mounting & Continuous operation / any position \\ Temperature range & -40 °C...+105 °C \\ Voltage dropout & ≤ 2 ms \\ Fire protection class acc. UL94 & V 0 \\ \end{tabular}$

ESD protection

Crimp contacts

Contact discharge — directly to terminals	≤ 10 kV
Contact discharge — indirectly to environment	≤ 25 kV
Air discharge — handling of the PCB	≤ 6 kV

Mounting

Screw mounting: M4 metal screws with locking washers between screw head and PCB.

Torx, T20 with a max. tightening torque of 4 Nm for the screws. Furthermore max. 10 Nm pressure to the PCB at the mounting points.

Mounting and connector kits are not included in delivery, but are available as accessories. The max. diameter of the mounting points is 10 mm.

Before mounting the device, ensure sufficient insulation between the device and the vehicle resp. the mounting points (min. 11.4 mm to other parts). If the IMD is mounted on a metal or conductive subsurface, this subsurface has to get ground potential (Kl.31; vehicle mass).

Deflection max. 1 % of the length resp. width of the PCB Conformal coating Thick-Film-Lacquer Weight 52 g +/-2 g

Ordering information

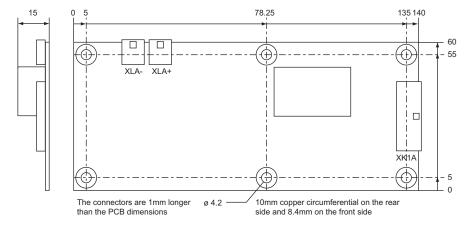
Type		Art.No
IR155-3203	Fixed default parameters $R_{\rm an}$: 100 k Ω Under voltage detection: 300 V $F_{\rm ave}$: 10 Measurement output low side	B 9106 8138
IR155-3203	Parameters can be customised $R_{\rm an}$: 100 k Ω 1 M Ω Under voltage detection: 0 V500 V $F_{\rm ave}$: 110 Measurement output low side	B 9106 8138C
IR155-3204	Fixed default parameters $R_{\rm an}$: 100 k Ω Under voltage detection: 0 V (inactive) $F_{\rm ave}$: 10 Measurement output high side	B 9106 8139
IR155-3204	Parameters can be customised $R_{\rm an}$: 100 k Ω 1 M Ω Under voltage detection: 0 V500 V $F_{\rm ave}$: 110 Measurement output high side	B 9106 8139C

Accessories

Mounting kit	B 9106 8500
Connecting kit IR155-32xx	B 9106 8501

Example for ordering

IR155-3204-100kΩ-0V + B 9106 8139


 $IR155\text{-}3204\text{-}200k\Omega\text{-}100V + B \ 9106 \ 8139C$

The parameters acc. response value and under voltage protection have always to be added or included to an order.

Dimension diagram

Dimensions in mm

PCB dimensions (L x W x H) 140 mm x 60 mm x 15 mm

Bender GmbH & Co. KG

P.O.Box 1161 • 35301 Grünberg • Germany Londorfer Straße 65 • 35305 Grünberg • Germany Tel.: +49 6401 807-0 • Fax: +49 6401 807-259 E-Mail: info@bender-de.com • www.bender-emobility.com